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Global Mfinimumn Solution of Engineering Design Problems

Many irmportant problems in enigineering design lead to a geometric pro-
gramming formulation:

it

rnin,.,(x) = Z i4Irt .c1" 1 I

subject to linear constraints arid bounds on the positive design variables x, >
0. j =. . m. The exponents 3J, are given and may be positive or negative.
If all ai > 0. then (1) is convex and easily solved.

If one. or more aj < 0, the problem is nonconvex. and may have manyv
local minima. The design engineer wants to find the global minimum (e.g.,
inininui cost or minimrumn weight).

Two differenlt computational methods have been developed for solving
problems (if this kind.

The first inechod is a tochastic approach which essentially finds all the
local 1ilinillia. byv Choo0sing tstartinlg points Which are unfiformtly distributed in
the feasible Iace ad the local mlinlimumL1 corresponding to each. A stopping
ru.le is uised to d:eternmline when all the locail mninimla have been found (with a
specified probability).

The second miethod initially trarnsforins (1) to a separable function. [t then
gives a guaranteed t-approximate glob~al minimum point, for any user specified
tolerance c. It is baised on a new theoretical result which gives an easily
computed su~fficient condition for a global iniimumn of this type of constrained
problem.

Conmputat~ional results for both meriiods have been obtained for a range of
Iproblemlls LuSil thle (ira X-MIP. Thle ctochiisric method is very well suited for-
parallel imii entatoim . and its itse~ tofl r C N.2 fand possibly the (!M-X) is
being investigated.
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Solution of Large-Scale Block Structured Problems

Many large-scale constrained optimization problems possess an
inherent block structure. In earlier work, supported by this grant, an efficient
parallel method for block-angular linear programs was developed and
implemented on both the Cray-2 and the NCUBE.

More recent work has extended this parallel method to problems with
many nonlinear constraints. This extension (called the RMG method) first
solves many relatively small linear programs in parallel (one for each block),
and then improves the values of the linking variable by solving a small
nonlinear reduced problem. This iterative process is repeated until an
optimality test is satisfied.

Computational results using the RMG method, for problems with
quadratic constraints, have been obtained on the Cray-2, and a 64-node first
generation NCUBE. A range of problems with up to 64 blocks have been
solved, the largest consisted of 64 blocks with a total of 3200 variables and
6400 quadratic inequality constraints. This problem took approximately 91
seconds on the Cray-2 and 548 seconds on the 64-node NCUBE.

For comparison, a set of similar problems were solved on the Cray-2,
using both MINOS 5.3 and the RMG method. The largest problem solved with
MINOS consisted of 16 blocks, 800 variables and 1600 quadratic inequality
constraints. It required 576 seconds to solve. The same problem was solved in
approximately 27 seconds using the RMG method.

These results have been presented to a group from SSl and IBM, who
have expressed an interest in incorporating this method in their mathematical
programming software.
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Multipivot Algorithm for Large-Scale Linear Programs with a
Special Structure

An important type of large-scale linear program with a special structure is
that with relatively few variables but many inequality constraints. For example,
a production problem with m production centers and K possible scenarios will
give a problem with m variables and mK inequality constraints. This structure
also represents the infinite horizon, discounted Markov decision problem.

A new solution method for this type of problem has been discovered,
which is similar to the simplex method but permits multiple pivots at each
iteration. This will typically cause a dramatic reduction in the total number of
iterations required as comoarec to the simplex method.

The worst case behavior of this algcrithm has been analyzed and it has
been shown that no more tan 2nK iterations are required.

Computational testing nas been carried out using the Cray-2 on a range
of problems with m=i00 and up to 100,000 inequality constraints. The
maximum number of iterations required was 13. The time to solve the largest
problem (m=100, mK=100,000) was 6.6 seconds.
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